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Abstract. Strong anisotropic effects in the propagation of surface acoustic waves (SAWs) from a point-like
source are studied experimentally and theoretically. Nanosecond SAW pulses are generated by focused
laser pulses and detected with a cw probe laser beam at a large distance from the source compared
to the SAW wavelength, which allows us to resolve fine intricate features in SAW wavefronts. In our
theoretical model, we represent the laser excitation by a localized impulsive force acting on the sample
surface and calculate the far-field surface response of an elastically anisotropic solid to such a force. The
model simulates the measured SAW waveforms very well and accounts for all experimentally observed
features. Using the data obtained for the (111) and (001) surfaces of GaAs, we describe a variety of effects
encountered in the SAW propagation from a point source in crystals. The most interesting phenomenon
is the existence of cuspidal structures in SAW wavefronts resulting in multiple SAW arrivals for certain
ranges of the observation angle. Cuspidal edges correspond to the “phonon focusing” directions yielding
sharp peaks in the SAW amplitude. A finite SAW wavelength results in “internal diffraction” whereby the
SAW wavefront spreads beyond the group velocity cusps. Degeneration of a SAW into a transverse bulk
wave is another strong effect influencing the anisotropy of the SAW amplitude and making whole sections
of the SAW wavefront including some phonon focusing directions unobservable in the experiment. The
propagation of a leaky SAW mode (pseudo-SAW) is affected by a specific additional effect i.e. anisotropic
attenuation. We also demonstrate that many of the discussed features are reproduced in “powder patterns”,
a simple technique developed by us earlier for visualization of SAW amplitude anisotropy.

PACS. 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound – 68.35.Gy Mechanical
properties; surface strains – 62.65.+k Acoustical properties of solids

1 Introduction

In an elastically anisotropic solid, acoustic group and
phase velocities are in general not collinear [1]. The im-
portance of this fact in steering and diffraction of acoustic
beams has been well recognized [1,2]. However, in solid
state acoustics, where acoustic waves are traditionally gen-
erated by planar transducers, it has been long considered
a “second-order” effect. The situation changes dramati-
cally for the propagation from a point-like source. The
most striking fact is that the acoustic wavefront (or group-
velocity surface) can have a complicated shape with cusps
and self-intersections [3]. Cuspidal edges yield sharp max-
ima in the acoustic intensity, the phenomenon termed
“phonon focusing” [4,5]. Although the existence of cusps
in the acoustic group velocity has long been known [1], the
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first experimental observation was made not in acoustics
but in experiments with ballistic thermal phonons [5]. It
was only in the last decade that propagation from point
sources at ultrasonic frequencies attracted substantial at-
tention [6–8]. This attention was stimulated by the point-
source/point-receiver approach in ultrasonic characteri-
zation of anisotropic materials [9,10] as well as by the
development of ultrasonic techniques such as acoustic mi-
croscopy and laser ultrasonics making it easy to create
point-like acoustic sources.

For surface acoustic waves (SAWs), phonon focus-
ing effects and cuspidal wavefront structures were also
predicted [11–13], and, more recently, observed experi-
mentally with laser generated SAWs [14–17]. Imaging of
anisotropic SAW wavefronts propagating from a point
source attracted attention of several groups [17–19]. The
most recent work [20] presented animated images of prop-
agating SAW wavefronts, with the most intricate pattern
observed on strongly anisotropic TeO2(001).
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In the present work, we expand the study reported
in our earlier note [17] to give a systematic consideration
of the main features encountered in anisotropic propaga-
tion of SAWs from a point source, using the results ob-
tained for the (111) and (001) surfaces of GaAs to illus-
trate the main points. Our experimental method based on
laser generation and detection of SAWs [21] provides ad-
equate sensitivity for measurements in the far field, with
the ratio of the source-to-receiver distance to the spatial
length of a SAW pulse on the order of ∼103. This al-
lows us to resolve fine details of SAW wavefronts such as
tiny cuspidal structures. Our calculation method also fo-
cuses on the far-field response, providing fast and efficient
procedure involving only a one-dimensional numerical in-
tegration. We will also present analytical expressions for
the shapes of SAW pulses corresponding to different sec-
tions of a wavefront with cuspidal structures, that agree
well with the experimentally observed waveforms. In the
asymptotic far-field expressions, the effect of phase veloc-
ity anisotropy, i.e. phonon focusing, is explicitly separated
from the angular dependence of the SAW excitation and
detection efficiency, particularly pronounced for the (100)
surface GaAs as well as a number of other cubic crystals
where SAW degenerates into a bulk transverse wave. We
will also present experimental results and calculations of
the pseudo-SAW branch near the 〈110〉 direction in the
(001) plane, where we reveal an additional anisotropic ef-
fect i.e. the angular dependence of attenuation. The dis-
cussion will be concluded by a comparison of our quantita-
tive results with “powder patterns”, a qualitative method
used in earlier surface phonon focusing studies [15,16].

It should be noted that the scope of the present work is
limited to linear SAW propagation. Strong anisotropic ef-
fects specific to non-linear propagation of high-amplitude
SAWs were recently reported in reference [22].

2 Group velocity

The SAW wavefront propagating from a point source cor-
responds within a scale factor to a polar plot of the
SAW group velocity vg(ϕ), also called the wave surface.
The value vg and angle ϕ of the SAW group velocity vec-
tor vg = ∇kω are expressed in terms of the value vf and
angle θ of the phase velocity by

vg = vf

[
1 + (dvf/dθ)2

]1/2
, (1)

ϕ = θ + arctan
(

1
vf

dvf

dθ

)
· (2)

For a given wavevector k, the group velocity vector is nor-
mal to the constant frequency surface ω(k) = const. co-
inciding within a scale factor to the so-called “slowness
surface” i.e. the polar plot of the slowness s = 1/vf(θ).
If 1 + v−1

f (d2vf/dθ2) < 0 for some interval of angles, then
the corresponding section of the slowness surface is con-
cave, with the result that different wavevectors may yield
group velocities in exactly the same direction. This gives
rise to a folded wave surface with cusps corresponding to

Fig. 1. Slowness and wave surfaces for SAWs in the (111)
and (001) planes of GaAs. The vertical direction is 〈112̄〉 in
the former and 〈100〉 in the latter case. A tiny cuspidal struc-
ture in the wave surface for the (111) plane is shown with a
magnification in the insert.

the inflexion points of the slowness surface. The existence
of cusps is thus determined by the anisotropy of the phase
velocity which, in turn, depends both on the elastic con-
stants of the medium and the surface orientation [23]. Cal-
culated slowness and wave surfaces for SAWs on the (111)
and (001) planes of GaAs are shown in Figure 1. In the
(111) plane, the slowness surface is only slightly concave
near the 〈112̄〉 direction resulting in a rather tiny cuspidal
structure, while in the (001) plane more pronounced cusps
can be seen.

Deviation of the group velocity from the wavevector
also results in acoustic energy anisotropy described by the
phonon-focusing factor [12,15,24]

A =
∣∣∣∣dϕ

dθ

∣∣∣∣
−1

=
1 + v−2

f (dvf/dθ)2∣∣∣1 + v−1
f (d2vf/dθ2)

∣∣∣ · (3)

At the cuspidal points, where 1 + v−1
f (d2vf/dθ2) = 0,

the focusing factor becomes infinite yielding caustics in
the SAW intensity. Going beyond the ray approximation
and taking into account the finite SAW wavelength λ
shows [11,13,15] that in the caustic direction the SAW am-
plitude falls off with distance as r−1/3 in contrast to the
usual r−1/2 dependence in other directions. This results
in a sharp maximum of the amplitude in the far field i.e.
when r/λ � 1.

3 Surface response to a localized pulsed
force: far-field calculation method

As it will be described in the following section, in our
experiment SAWs are generated via laser ablation mech-
anism i.e. due to a recoil pressure pulse acting on the
sample surface. The problem of the displacement response
of an elastic half space to a concentrated pulsed force,
also known as the “Lamb problem”, has recently at-
tracted renewed attention in applications to anisotropic
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solids [25,26]. Algorithms for calculating surface space-
time Green’s functions, yielding the surface displacement
response to an instantaneous point force applied to the
surface, have been developed for both free surfaces [26]
and interfaces [27]. With the help of Green’s functions,
the surface displacement response to any model excitation
source can be calculated via a convolution procedure. An
alternative approach of using numerical finite-differences
methods is becoming more attractive as the perfor-
mance of computers improves. Both the Green’s functions
method [27] and finite-difference time-domain method [28]
have been used successfully to model anisotropic SAW
propagation at relatively small distances from the source,
with r/λ ∼10–30. However, both approaches become in-
creasingly computationally intensive as r/λ increases.

The exact response functions contain not only SAWs
but also evanescent contributions of bulk waves falling
off with distance much faster than SAWs [27,28]. In the
far field these contributions can be disregarded, provid-
ing an opportunity to significantly simplify the calcu-
lations by taking into account only SAW and pseudo-
SAW contributions to the response. A similar approach
was adopted in reference [29] where the far-field response
of the (001) surface of Si to a harmonic excitation force
was calculated. Here, we present an algorithm for calcu-
lating SAW waveforms produced by an impulsive excita-
tion force for an arbitrary crystal symmetry and orienta-
tion. We will show that for a Gaussian excitation pulse,
some of the integrations required to obtain a space-time
response can be performed analytically, leaving a simple
one-dimensional integration for numerical computation. In
addition to yielding a very simple computational method,
our approach provides some insight into the interplay of
different anisotropic effects influencing SAW propagation
from a point-like source.

We consider a semi-infinite anisotropic elastic contin-
uum occupying the half-space x3 > 0. The displacement
field u(r, t) is described by the equations of motion [1]:

ρ
∂2ui

∂t2
= Cijkl

∂2ul

∂xj∂xk
, (4)

where ρ is the material density and Cijkl the elastic con-
stant tensor. The boundary conditions at the free surface
x3=0 are given by

σ3i = C3imn
∂um

∂xn
= −δi3F (x‖, t). (5)

Here σij is the stress tensor, and the right-hand side
of the equation represents the external vertical force, with
x‖=(x1, x2) representing the “in-plane” coordinate. Be-
low, we will assume the temporal and spatial distribution
of the excitation force to be Gaussian,

F (x‖, t) = F0 exp(−t2/τ2) exp(−r2/a2), (6)

where r=|x‖|.
Performing a Fourier transform over time t and “in-

plane” coordinates

ũ(x3, k, ω) =
∫

dxdtu(x, t) exp(iωt − ikx‖) (7)

reduces the problem to an algebraic one. Solutions of this
algebraic problem are known [26]; in particular, the sur-
face Green’s function G33, i.e. the vertical surface dis-
placement response to an instantaneous vertical point
force F = δ(x‖)δ(t), is given by

G̃33(k, ω) = − 1
iω

Ψ33(s), (8)

where s = k/ω, and

Ψ33(s) =
∑

n

adj(M)n,3U
(n)
3

det |M| , (9)

Mn,m =
∑
ij

C3mijs
(n)
i U

(n)
j . (10)

Here s
(n)
1,2 = k1,2/ω, while s

(n)
3 and U(n), n = 1, .., 3

are given by those three out of the six solutions of the
Christoffel equation

(Cijklsjsk − ρδil)Ul = 0, (11)

which correspond to “outgoing” waves [23].
For a general source function F (x, t) the Fourier-

domain vertical surface displacement response is given by
the product F̃ (k, ω)G̃33(k, ω). Consequently, the space-
time response is given by an inverse Fourier transform:

u3(x‖, t) =
1

8π3

∫
dkdωF̃ (k, ω)G̃33(k, ω) exp(ikx‖− iωt).

(12)
Equation (12) yields the exact formal solution to the time-
domain problem. Now our goal is to simplify the integral
to enable efficient computation of the far-field response.

First, we switch to the polar coordinates, x‖ → (r, ϕ),
k →(k,θ). Taking into account equation (8) and restricting
the integration over ω to the interval [0,+∞] we get the
result that

u3 =
1

4π3
Re

∫ +∞

0

dω

∫ 2π

0

dθ

×
∫ +∞

0

dk
k

iω
F̃ (k, θ, ω)Ψ33(s, θ)

× exp[ikr cos(θ − ϕ) − iωt]. (13)

We first consider the integration over k. Ψ33, consid-
ered as a function of complex k, has a pole on the real axis
due to the Rayleigh wave at kR = sR(θ)ω, where sR(θ) is
the Rayleigh wave slowness. Convergence of the integral is
achieved by introducing infinitesimal “artificial damping”
that shifts the pole off the real axis in accordance with

1
k − kR

−→ 1
k − kR − i0

· (14)
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The far field response can be evaluated as the residue at
the pole yielding the result that

u3 =
1

2π2
Re

∫ +∞

0

dω

×
∫ ϕ+π/2

ϕ−π/2

dθ sR(θ)iωF̃ (k = sRω, θ, ω)

×R33(θ) exp (iω[sR(θ)r cos(θ − ϕ) − t]) , (15)

where R33(θ) = −iResΨ33(s, θ)|s=sR describes the
anisotropy in the SAW generation efficiency in the
k space.

For the Gaussian space-time source function of equa-
tion (6) the integration over ω can now be easily per-
formed. Taking into account the fact that, in the vicinity
of the SAW pole, Ψ33 is pure imaginary [26] and, conse-
quently, R33(θ) is real, we get the result

u3 =F0τa2

∫ ϕ+π/2

ϕ−π/2

dθ sRR33ξτ
−3
θ exp

(−ξ2/τ2
θ

)
, (16)

where

ξ = t − sRr cos(θ − ϕ), τθ = (τ2 + s2
Ra2)1/2. (17)

Equation (16), which is the main result of this section,
contains only a simple one-dimensional integration and
is easy to implement numerically. Note that the slowness
curve sR(θ) and R33(θ) need to be computed only once for
a given crystal surface, and can then be used to compute
the response for any space-time point.

In the limit of large r, an alternative approach to calcu-
lating the integral in equation (15) is to use the stationary
phase technique to perform the integration over θ. This
procedure is well documented in the literature [11,13,15],
so we only present the final result:

u3 =
∑

j

1
(2π3rv3

f )1/2


 [1 + v−2

f (∂vf/∂θ)2]1/2∣∣∣1 + v−1
f (∂2vf/∂θ2)

∣∣∣



1/2

×R33(θj)Φ±(t − r/vg) (18)

where Φ±(ξ)=
∫ +∞

0

dω ω1/2 exp
[−ω2τ2

0 /4
]
sin

(
ωξ ± π

4

)
,

(19)
where the sign in the argument of the sin function corre-
sponds to the sign of 1+v−1

f (∂2vf/∂θ2), i.e. to the sign of
the slowness surface curvature. The SAW phase velocity
vf = 1/sR(θ) and its derivatives are taken at stationary
points θ = θj , determined by solving equation (2) with
respect to θ. In the cuspidal region there are several so-
lutions, so the response is given by the sum of contribu-
tions of different θj corresponding to a given observation
angle ϕ. Finally, vg is the group velocity determined by
equation (1), and τ0 is the duration of the SAW pulse,

τ0 =
(
τ2 + a2/v2

f

)1/2
. (20)

Fig. 2. Vertical surface velocity profiles in a SAW pulse accord-
ing to equations (19) and (22) corresponding to (a) positive,
(b) negative, and (c) zero curvature of the slowness surface.

At the cusp point, where 1+v−1
f (∂2vf/∂θ2) = 0, equa-

tion (18) becomes invalid. In this case, taking into account
the next term in the series expansion of the phase in the
stationary phase method [13,15] yields the contribution of
a cusp point.

u3 =
F0τa235/6

22/3π2v
4/3
f r1/3

[
[v2

f + (∂vf/∂θ)2]1/2

|∂vf/∂θ + ∂3vf/∂θ3|

]1/3

×R33(θj)Φ0(t − r/vg), (21)

where

Φ0(ξ) =
∫ +∞

0

dω ω2/3 exp
[−ω2τ2

0 /4
]

cosωξ. (22)

While offering little advantage compared to equation (16)
from the computational point of view, the asymptotic ex-
pressions (18) and (21) provide some insight into the be-
havior of the SAW response. First of all equations (19)
and (22) yield analytical expressions for the shape of
SAW pulses corresponding to the positive, negative, and
zero curvature of the slowness curve. Note that in the ex-
periment described in the following section we measured
the slope ∂u3/∂r rather than u3 itself. Therefore the ex-
perimentally observed signal waveforms should be com-
pared to the derivative ∂Φ/∂ξ. Figure 2 presents the plots
of ∂Φ/∂ξ for the three cases mentioned above. We no-
tice that the waveforms corresponding to the positive and
negative curvature of the slowness curve are “inverted in
time” with respect to each other. The SAW pulse dura-
tion is determined either by the temporal or spatial width
of the source function depending on whether τ or a/vg is
larger. The SAW amplitude anisotropy in equation (18)
is determined both by the expression in square brackets,
which describes the phonon focusing effect and almost co-
incides with the focusing factor as given by equation (3),
and by the angular dependence of SAW generation and
detection efficiency described by R33 [θj(ϕ)]. Note that in
the case of a line force [30], the anisotropy effect on the
SAW amplitude is described solely by R33(θ), in which
case θ is the SAW wavevector direction perpendicular to
the line along which the force is applied.
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4 Experiment

The experimental set-up is represented in Figure 3.
SAW pulses were generated by frequency-tripled (355 nm)
Q-switched Nd:YAG laser irradiation, with the laser pulse
duration and energy being 7 ns and 40 µJ, respectively.
The laser beam was focused into a spot of 50 µm in diam-
eter to produce surface heating and ablation accompanied
by the generation of SAWs propagating away from the
laser spot. The duration of the generated SAW pulses was
mainly determined by the ratio of the laser spot size to the
SAW velocity, i.e. ∼20 ns. The corresponding SAW fre-
quency spectrum was thus limited to ∼50 MHz. At these
frequencies, both room temperature acoustic attenuation
and surface-roughness scattering on optical-quality pol-
ished GaAs samples were negligible for propagation dis-
tances of a few centimeters.

SAW waveforms were detected using the probe beam
deflection technique [31]. The probe beam of a cw diode-
pumped frequency-doubled Nd:YAG laser (532 nm) of
30 mW power was focused on the sample surface to a
10 µm- diameter spot at a distance from the excitation
point of 3.21 or 2.51 cm for measurements on the (111)
and (001) GaAs surfaces, respectively. The deflection an-
gle of the reflected probe beam was detected by an ar-
rangement of two fast photodiodes sensitive to the beam
position. The signal, proportional to the surface slope and
hence to the vertical surface velocity in a SAW pulse, was
preamplified and recorded by a digital oscilloscope. The
setup was able to detect a surface slope of 5 × 10−6 rad
in the single-shot regime, which corresponded to about
0.1 nm surface displacement in a SAW pulse. The tem-
poral resolution was ∼4 ns, being mainly limited by the
finite size of the probe laser spot.

The excitation laser fluence was only slightly above the
ablation threshold, therefore the shape of the SAW wave-
forms did not change over the first 100 laser shots used
for averaging in order to improve the signal-to-noise ra-
tio. To carry out measurements at different observation
angles, the sample was rotated about an axis normal to
the surface while the laser beams remained in place. Thus
a fresh point on the sample was used for SAW excitation
at each observation angle.

5 Results and discussion

5.1 SAWs on GaAs (111)

Figure 4a presents SAW waveforms on the (111) surface of
GaAs recorded at different observation angles with respect
to the 〈112̄〉 direction. Two or three pulses correspond-
ing to different branches of the cuspidal structure were
observed at angles |ϕ| ≤ 4.5◦. The tiny cuspidal struc-
ture is well resolved due to the fact that the ratio of the
SAW time-of-flight to the SAW pulse duration is as large
as ∼103. At ϕ = 0◦ the intersection of two branches of the
wave front results in doubling of the amplitude of the sec-
ond SAW arrival. This fact was used by us for the accurate

Fig. 3. Experimental set-up. SAW pulses were excited via sur-
face ablation by focused nanosecond laser pulses and detected
by the deflection of a cw probe beam measured by a fast split
photodiode.

determination of the 〈112̄〉 direction. When the observa-
tion direction deviates from 〈112̄〉 by more than 0.2◦, three
SAW arrivals can be discriminated. With a further in-
crease in the observation angle, the second arrival merges
with the first one resulting in a pulse of enhanced am-
plitude with a maximum at about 2.5◦. Subsequently, its
amplitude falls off rapidly, and for ϕ ≥ 5◦ only a single
SAW arrival can be observed.

Figure 4b shows the SAW waveforms calculated us-
ing equation (16) for τ = 4 ns, corresponding to the
FWHM laser pulse duration of 7 ns, a = 25 µm, and
the same source-to-receiver distance as used in the exper-
iment. The following values of GaAs elastic constants and
density (see Ref. [32]) were used for all calculations in this
work: C11 = 118 GPa, C12 = 53.5 GPa, C44 = 59.4 GPa,
ρ = 5.316 g/cm3. It should be noted that elastic con-
stants of GaAs cited in different sources [1,32,33] vary
by as much as 1%. This exceeds by an order of magni-
tude the piezoelastic stiffening effect [33], thus rendering
unnecessary the incorporation of piezoelasticity into the
calculations.

Note that for the ablation regime of SAW generation
the spatial and temporal distribution of the recoil pressure
acting on the surface is, in fact, unknown. We replaced it
by the distribution of the laser intensity, which is obviously
a very rough approximation. Nevertheless, the agreement
between measured and calculated waveforms is very good.
The calculations reproduce all features observed in the
experiment such as different shapes of SAW pulses corre-
sponding to different parts of the cuspidal structure and
the enhancement of the first pulse amplitude near the cusp
direction.

The measured angular dependence of the group veloc-
ity of SAW pulses is presented in Figure 5a while Figure 5b
shows the angular dependence of the peak-to-peak ampli-
tude of the SAW pulses. In general, measured and calcu-
lated group velocity data are in good agreement, with a
slight systematic deviation being well within the uncer-
tainty in the elastic constants of GaAs mentioned above.
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(a) (b)

Fig. 4. (a) Measured and (b) simulated SAW waveforms at different angles to the 〈112̄〉 direction on GaAs (111).

Fig. 5. (a) Measured angular dependence of the SAW group velocity on GaAs (111). The angle is measured from 〈112̄〉.
Triangles, open circles, and squares refer to different arrivals. The solid line is a theoretical curve calculated with equations (1)
and (2). (b) Angular dependence of the peak-to-peak amplitude of the SAW pulses. The same symbols as in (a) are used for
different arrivals. For ϕ = 0◦ half of the measured amplitude of the second SAW arrival, resulting from the superposition of
two pulses, is used. Solid lines represent theoretical results calculated from the simulated waveforms. The vertical dashed line
marks the cusp location.



A.A. Maznev et al.: Anisotropic effects in surface acoustic wave propagation from a point source in a crystal 435

Fig. 6. Angle-time image of a SAW pulse on GaAs (111) cal-
culated using equation (16). The angle is measured from 〈112̄〉.

A remarkable finding, however, is that the first SAW ar-
rival is detected well beyond the group velocity cusps lying
at |ϕ| = 2.9◦. This fact results from the restricted nature
of the group velocity calculations corresponding to the
geometrical acoustics approximation in which λ/r → 0.
Finite wavelengths lead to the phenomenon of “internal
diffraction” [8] resulting in the penetration of the acoustic
field beyond the cusps. This phenomenon was previously
observed in group velocity measurements with bulk acous-
tic waves and termed “eidolon” [7]. As can be seen from
Figure 4b, the eidolon is well reproduced by the far-field
surface response calculations. A good illustration of the ei-
dolon effect is provided by the simulated angle-time image
of the cuspidal structure presented in Figure 6. The image
is very similar to the group velocity surface, but instead of
sharp cusps we have a steadily decaying response penetrat-
ing well beyond the caustics. The phonon focusing effect
can clearly be seen in the enhancement of the amplitude
near the cusps. The calculated angular dependence of the
SAW amplitude shown in Figure 5b yields a quantitative
picture and, again, demonstrates an agreement between
the measurements and simulation. Note that for the (111)
plane of GaAs, R33(θ) is almost independent of the angle,
therefore the SAW amplitude anisotropy is determined by
the phonon focusing effect alone. Below we will see that
this is not always the case.

5.2 SAWs on GaAs (001)

Results of measurements on the (001) GaAs surface are
presented in Figures 7–8. Here, the measurements were
made in a wider angular range and reveal a wide range of
phenomena. First, near the 〈110〉 direction there is an ad-
ditional leaky mode termed pseudo-SAW, or PSAW [23].
This mode slightly attenuates due to the coupling to a
bulk transverse wave except for isolated directions of the
wavevector for which it becomes a pure surface mode. The
PSAW wavefront does not have cusps [34] but there is ap-
preciable focusing in the 〈110〉 direction. Turning now to
the SAW mode, we notice that the experimental data map

Fig. 7. (a) Measured and (b) simulated SAW waveforms on
GaAs (001). The angle is measured from 〈100〉.

only a part of the wavefront, and only one SAW caustic
of the two theoretically calculated ones is observed. The
reason for that, as will be explained in more details below,
is the angular dependence of SAW polarization which be-
comes predominantly shear horizontal as the wavevector
direction approaches 〈110〉. It should be noted that a sim-
ilar phenomenon has been previously observed [15] and
simulated by calculations [29] for the (001) surface of Si.
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Fig. 8. (a) Measured and calculated angular dependence of
the SAW and PSAW group velocity on GaAs (001). The angle
is measured from 〈100〉. Triangles and open circles refer to
different SAW arrivals. The solid line is a theoretical curve
calculated with equations (1) and (2). (b) Angular dependence
of the peak-to-peak amplitude of SAW and PSAW pulses. The
same symbols as in (a) are used for different arrivals. Solid
lines represent theoretical results calculated from the simulated
waveforms. Cusp positions are marked by vertical dashed lines.

A comparison of the measured and calculated
SAW waveforms (Fig. 7) as well as the measured and
calculated angular dependencies of the SAW amplitude
(Fig. 8b) shows a good agreement between theory and ex-
periment. The calculated angle-time image is presented in
Figure 9 and, in agreement with what is observed exper-
imentally, a part of the calculated SAW wavefront in the
image is missing. The reason for this behavior is that the
SAW amplitude anisotropy is now determined not only
by phonon focusing but also by the strong angular depen-
dence of R33(θ), resulting from the angular dependence
of the SAW polarization pattern. It is known [23] that in
cubic crystals, such as Si and GaAs, SAW on the (001)
surface merges with the shear horizontal bulk wave as the
phase velocity angle approaches 45◦ (i.e. the 〈110〉 direc-
tion), as illustrated in Figure 10a. Thereby the SAW po-

Fig. 9. Calculated angle-time image of SAW and PSAW wave-
forms on GaAs (001). The angle is measured from 〈100〉.

Fig. 10. Angular dependencies of (a) the phase velocity and
(b) excitation/detection efficiency factor R33(θ) for SAW and
PSAW branches on GaAs (001). In (a), the dashed curve cor-
responds to the bulk slow transverse acoustic mode. In (b), the
thin line shows the angular dependence of PSAW attenuation.
The angle is measured from 〈100〉.

larization becomes predominantly shear horizontal while
the SAW penetration depth into the substrate increases.
Both factors diminish the vertical surface displacement
in a SAW produced by a vertical surface force. As a re-
sult, R33(θ) vanishes as θ approaches 45◦, as shown in
Figure 10b. Now it should be remembered that our obser-
vation angle is the group velocity angle ϕ rather than the
phase velocity angle θ. The cuspidal points at ϕ1 = 23◦
and ϕ2 = 4◦ correspond to θ1 = 21◦ and θ2 = 29◦ in
terms of the phase velocity angle. As can be seen in Fig-
ure 10b, R33 decreases sharply between θ1 and θ2 resulting
in a decrease in the SAW amplitude. The whole section
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of the SAW wavefront extending from the cuspidal point
ϕ2 = 4◦ to the 〈110〉 direction and further (i.e. to a sym-
metric cuspidal point at ϕ2 = 86◦) is not observable be-
cause R33 quickly vanishes at θ > θ2. One consequence of
this fact is a “gap” at ϕ ∼ 26◦, where neither SAW nor
pseudo-SAW signals could be detected.

It is interesting to compare Figure 9 to similar images
for LiF(001) [20] as well as for the water-loaded Si(001)
surface [19,27]. Both Si and LiF are cubic crystals similar
to GaAs as far as elastic anisotropy is concerned, with the
anisotropy factor η = 2c44/(c11−c12) taking values of 1.57,
1.8, and 1.95 for Si, GaAs, and LiF, respectively. In the im-
ages of references [19,20,27], there is no gap between the
SAW and PSAW branches, with the wavefront being seem-
ingly continuous and the cusp in the SAW wavefront not
well resolved. The reason is that those images correspond
to relatively small source-to-receiver distances compared
to the SAW wavelength, with r/λ ∼10–30. In fact, for the
case of a water-loaded surface, the attenuation of SAWs
induced by the water loading broadens the SAW pulse
thus limiting r/λ to about 30. That is, the far-field limit
is never achieved, independently of how large the source-
to-receiver distance is. Another consequence of this fact
is a prominent near-field feature due to a bulk wave con-
tribution in the images in references [19,27] that was not
observed in our experiment.

5.3 Pseudo-SAWs on GaAs (001)

A PSAW is not a true surface wave in that it contains a
small bulk wave component radiated from the surface, re-
sulting in attenuation or “leakage” [23]. Mathematically,
a PSAW corresponds to a pole in Ψ33 slightly shifted off
the real axis of s, so that the slowness at the pole s = sR

has a small imaginary part. Note that equation (16) used
for the SAW response calculations was derived under the
assumption of real sR and real R33. Consequently, it can-
not be used to compute PSAW waveforms. On the other
hand, stationary phase analysis retains its validity for a
slightly complex slowness sR = s′R + is′′R. In this case,
equation (18) should be replaced by

u3 =
1

(2π3rv3
f )1/2


 [1 + v−2

f (∂vf/∂θ)2]1/2∣∣∣1 + v−1
f (∂2vf/∂θ2)

∣∣∣



1/2

×Re
[
R33(θj)

∫ +∞

0

dω (−i)ω1/2 exp
(−ω2/τ2

0 −s′′R(θj)ωr

× cos(θj − ϕ)
)
exp

(
iωξ ± iπ

4

)]
, (23)

where vf = 1/s′R and all other notations are the same as
in equation (18).

Since for the (001) surface of GaAs the PSAW slowness
surface curvature is always positive, equation (23) can be
used to calculate the PSAW contribution to the surface re-
sponse for any observation angle. In this way, we obtained
an angle-time image of the PSAW response shown along

Fig. 11. Calculated angular dependence of the PSAW am-
plitude for different source-to-receiver distances. The angle is
measured from 〈100〉.

with the SAW response in Figure 9, as well as the angular
dependencies of the PSAW amplitude presented in Fig-
ure 8b. An interesting feature present in both calculated
and experimental results is the presence of the “shoulders”
in the angular dependence of the amplitude. It originates
from the anisotropy in PSAW attenuation determined by
the angular dependence of s′′R. There are isolated direc-
tions within the PSAW branch where s′′R vanishes. In these
directions, the PSAW turns into a true surface wave. One
such direction on GaAs(001) is well known [23] to be 〈110〉.
However, there is another direction θ 
 33◦ correspond-
ing to a group velocity angle ϕ 
 36◦ at which s′′R also
vanishes [35], as shown in Figure 10b. This anisotropy
in s′′R results in a change in the angular dependence of
the PSAW amplitude with observation distance, as illus-
trated in Figure 11. At a small source-to-receiver distance
where the attenuation is not important, PSAW amplitude
anisotropy is determined by phonon focusing and the an-
gular dependence of R33, both resulting in a maximum in
the 〈110〉 direction, i.e. at ϕ = 45◦. At larger distances
the attenuation effect increases leading eventually to side
maxima at ϕ 
 36◦ and a symmetrical direction ϕ 
 54◦.

5.4 Powder patterns

The angular dependence of the SAW amplitude can be vi-
sualized by “powder patterns” [14,16,36] formed by shake-
off of small powder particles by high-amplitude SAWs. A
focusing pattern for the (111) surface of GaAs obtained
by this method has been presented and qualitatively ex-
plained in our previous work [15]. Now that we have quan-
titative measurements of the SAW amplitude vs. angle as
well as a better understanding of the phenomena involved,
it is instructive to compare the powder patterns for both
(111) and (001) surfaces of GaAs with the new data.
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The powder patterns are obtained by covering the sam-
ple surface with alumina particles of about 2 µm in diam-
eter and exposing it to about 10 laser shots at a greater
energy (about 1 mJ) than was used for the time-resolved
measurements. Air flow directed at the surface helps ob-
tain better patterns by removing the detached particles
which otherwise tend to settle back onto the surface. Pho-
tographs of the resulting powder patterns on the (111) and
(001) surfaces of GaAs are presented in Figure 12. Scat-
tering of illumination light by particles makes a particle-
covered surface look bright, while the areas where the
particles were removed look dark. The degree of dark-
ness in the images provides a qualitative indicator of the
SAW amplitude.

The powder pattern on the (111) surface reveals a dis-
tinct pair of phonon focusing directions making an an-
gle of about ±2.5◦ with the 〈112̄〉 direction. This angle is
somewhat smaller than the 2.9◦ angle calculated for the
geometrical caustics. This agrees with Figure 5b show-
ing that the actual maximum of the SAW amplitude is
closer to 〈112̄〉 than the calculated cusp direction. The
powder pattern also indicates that the SAW amplitude
between the caustics is greater than outside, which also
agrees with Figure 5b. Turning our attention to the pow-
der pattern for the (001) surface, we see distinct focusing
directions making an angle of 
22◦ with the 〈100〉 axis.
This fact, again, is in agreement with the time-resolved
measurements and the simulations, as is the absence of
the maximum corresponding to another phonon focusing
direction at ϕ2 = 4◦. The maximum at the 〈110〉 direc-
tion corresponding to the PSAW branch is also present in
the powder pattern, and even the side shoulders resulting
from the anisotropic attenuation appear to be reproduced.
Also quite visible is a gap between the SAW and pseudo-
SAW branches corresponding to a deep minimum in the
surface response amplitude in Figure 8b.

6 Conclusions

The first objective of the present work was to study an
amazing phenomenon in wave propagation in anisotropic
media, i.e. cusps in the wavefronts propagating from point
sources. This phenomenon has been previously studied
with bulk acoustic waves. However, because of the com-
plexity of three-dimensional slowness and wave surfaces,
an explanation of the effect is usually given in terms of a
two-dimensional picture [3]. Therefore, there is a general
interest in a demonstration of this phenomenon for the
two-dimensional surface wave propagation.

Furthermore, the present work provides a basis for the
quantitative analysis of SAW waveforms in anisotropic
materials. We have developed both a high-resolution ex-
perimental technique to measure SAW responses and a
numerical algorithm to simulate them with good agree-
ment between theory and experiment. Also, we have a
clear understanding of the origin of different features in
the SAW response. Although the study has been limited to
the (111) and (001) planes of GaAs, it illustrates a variety
of phenomena that can be encountered in the SAW prop-
agation in anisotropic media. Besides general anisotropic

Fig. 12. Powder patterns on (a) (111) and (b) (001) surfaces of
GaAs. The orientation of the images is the same as in Figure 1,
i.e. the vertical direction is 〈112̄〉 in (a) and 〈100〉 in (b).

wave propagation phenomena such as cusps in the group
velocity, phonon focusing and internal diffraction, these
include specific SAW effects such as a change in the polar-
ization due to merging with a bulk mode and the presence
of a pseudo-SAW branch with isolated pure-mode points.

Together with other work in the field [18–20,25–28],
this paper should be considered in the context of an ef-
fort to develop quantitative techniques to analyze the dy-
namic surface response of an elastically anisotropic solid.
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At this point, adequate experimental and computational
tools exist which allow to measure and simulate both near-
field [19,26–28] and far-field responses, thus providing the
necessary basis for using point-source/point-receiver sur-
face acoustic techniques for materials characterization.
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gemeinschaft (DFG), and the Fonds der Chemischen Industrie.
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